Local adaptive algorithms for information maximization in neural networks, and application to source separation
نویسندگان
چکیده
Information theoretic criteria for neural network adaptation laws have recently become an important focus of attention. We consider the problem of adaptively maximizing the entropy of the outputs of a deterministic feedforward neural network with real valued stochastic input signals, as considered by Bell and Sejnowski. We give a new explanation for the relevance of output information (entropy) maximization for source separation applications and reinterpret Bell and Sejnowski's approach in a more general context of probability density estimation. This insight is the basis for a generalization of the approach, and we consider a family of gradient based algorithms. 1. BLIND SOURCE SEPARATION, INFORMATION MAXIMIZATION AND PROBABILITY ESTIMATION The problem of blind separation of independent sources can be formulated as follows. A vector of n stationary input signals x(t) 2 R is known to result from mixing n stochastically independent sources s(t) 2 R :
منابع مشابه
A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملBlind Source Separation in Nonlinear Mixtures by Adaptive Spline Neural Networks
In this paper a novel paradigm for blind source separation in the presence of nonlinear mixtures is presented and described. The proposed approach employs a neural model based on adaptive B-spline functions. Signal separation is achieved through an information maximization criterion. Experimental results and comparison with existing solutions confirm the effectiveness of the proposed architecture.
متن کاملNeural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators
Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997